Evaluation of biological nitrogen fixation in sugarcane associated microorganisms

Mario A. Casas, Juana Pérez, Juan Roldós and Marcia Medina.

Instituto Nacional de Investigaciones de la Caña de Azúcar, Avenida Van Troi No. 17203, Rancho Boyeros, Código Postal 19210, Ciudad de La Habana, Cuba.

Received: April 5th 2000. Accepted: July 24th 2001.

Key words: Azospirillum sp., Acetobacter diazotrophicus, biological nitrogen fixation, nitrogenase activity.

Sugarcane is a highly nutrient extractor crop, regarding nitrogen it is generally accepted that sugarcane plants extract between 120 to 270 kg ha⁻¹ and the first ratoon between 100 to 170 kg ha⁻¹.¹ These values suppose that without nitrogen fertilization continuous sugarcane harvests may deplete nitrogen reserves in soil no matter how fertile it could be, however that doesn’t occur,² therefore biological nitrogen fixation (BNF), a natural occurring event, could be responsible for this fact.

BNF is a skill reserved in nature to a few bacterial genera, some of them symbiotic and other plants associated or free living. This biochemical process consists of the atmospheric dinitrogen reduction to ammonia by means of the nitrogenase enzyme complex present in these microorganisms, like that atmospheric dinitrogen enters nitrogen cycle thus becoming an important nitrogen source for the biosynthetic processes of beneficiary crops and also helping soil enhancing, which explains the previous affirmation. In the sugarcane crop, a gramineae, interaction between plants and diazotrophic bacteria occurs throughout association, differently from what takes place in the symbiotic rhizobium-legume interaction. Several diazotrophic bacterial genera have been reported associated with sugarcane at different levels depending on the genus being Azospirillum sp. and Acetobacter diazotrophicus among the most significant BNF contributors.³ Azospirillum has been found in the rhizosphere and rhizoplane of sugarcane and other gramineae,³ A. diazotrophicus has been isolated from roots, apical zones, stems and leaves in a great number of sugarcane cultivars⁴ but never from soil.⁵ Several environmental and genetic factors have influence on the association like the strain-cultivar specificity and the competitive capacity within the microbiota, which exerts influence on the BFN process and its contribution to vegetal nutrition.⁶ The detection and quantification of this process in sugarcane endophytes and rhizospherical microorganisms is of the utmost importance to determine its contribution to nitrogen metabolism in gramineae, thus making possible to improve the crop yields by means of application by inoculation of nitrogen fixing efficient strains.

Quantification studies of BNF associated with sugarcane first began in the early 70s using the acetylene reduction assay (ARA).³ This method because of its sensitivity is used in screenings to detect bacteria with high nitrogen fixation potentials. These studies have been complemented with other techniques such as isotopic dilution (ID) of ¹⁵N and total nitrogen balance in the plant-soil system.⁷

In the laboratory using the ARA technique some Azospirillum and A. diazotrophicus strains with high nitrogenase activity values were detected in pure culture media. The technical conditions of the chromatographic runs were the following: gas chromatograph type UNICAM Series 610 with flame ionization detector (FID); crystal packed column 2.7 m x 4.4 mm; packing material Porapak N 80-100 mesh; oven temperatures: injector 100 °C, column 100 °C; detector 150 °C; flows: \(N_2 \) 30 mL min⁻¹, \(H_2 \) 32 mL min⁻¹, air 320.5 mL min⁻¹; run time 6 min; ethylene retention time 3.25 min; acetylene retention time 4.73 min; injection volume 1 mL.

The pure cultures of Azospirillum in Nb³ and A. diazotrophicus in LGI-P³ media were taken at the tenth hour of logarithmic growing phase and incubated for one hour in a 10 % acetylene atmosphere at 35 °C. The ARA values reported (media of ten replies) (Table 1) in eight Azospirillum strains and two A. diazotrophicus strains can be considered good in five strains of Azospirillum and the two of A. diazotrophicus when compared with values obtained from the pattern strains used: Azospirillum brasilense sp³ (ATCC 29145), Azospirillum lipoferum sp. Br17 (ATCC 29709) and A. diazotrophicus PAL5 (ATCC 49037), all of Brasilian origin. These values constitute a very useful indicator for the selection of efficient strains to be proposed as main components in the formulation of bioproducts to be commercialized and applied in sugarcane with the aim to magnify the BFN process. These results together with other important indicators lead to the selection of the 8-1 strain of Azospirillum.
with which a biofertilizer were developed and inoculation field experiments carried out under different edafoclimatic and phytotechnical managemant conditions, demonstrating the profitable effect of these inoculations.10

BIBLIOGRAPHY

