Isolation and characterization of a mixture of higher primary aliphatic alcohols of high molecular weight from henequen (Agave furcroydes L.) wax

Ernesto Méndez*, Mayra Blanco*, Abilio Laguna* † and Ezequiel García**

- * Centro de Productos Naturales, C.N.I.C., Ave 25 #15202, Reparto Cubanancán, Playa, Habana, Cuba, e-mail: dalmer@etecsa.ip.cu
- ** Dirección de Producción, C.N.I.C., Ave 25 #15202, Reparto Cubanancán, Playa, Habana, Cuba

⁺ Correspondence address

Recibido: 21 de febrero de 2002

Aceptado: 8 de abril de 2002

Palabras clave: Agave furcroydes L, cera, alcoholes alifáticos, identificación, cuantificación.

Key words: Agave furcroydes L, wax, fatty alcohols, identification, quantification.

RESUMEN: Partiendo de una colecta de epidermis de hojas de henequén, especificamente de la especie Agave furcroydes L. y empleando un disolvente orgánico, fue extraída la cera de dicha planta. La cera después de someterla a una reacción de hidrólisis básica o saponificación y empleando nuevamente un disolvente orgánico le fue extraída una mezcla de alcoholes alifáticos, lineales y de alto peso molecular. Dicha mezcla fue estudiada mediante las técnicas de Espectrometría Infrarroja y Cromatografía Gaseosa acoplada a Espectrometría de Masas, lo que permitió una caracterización química de la misma. Finalmente fueron identificados y cuantificados en la mezcla los once alcoholes siguientes: 1hexacosanol, 1-heptacosanol, 1-octacosanol, 1-nonacosanol, 1-triacontanol, 1-hentriacontanol, 1-dotriacontanol, 1-tritriacontanol, 1-tetratriacontanol, 1-pentatriacontanol y 1-hexatriacontanol. Los alcoholes más abundantes en la mezcla son 1-octacosanol y 1-triacontanol. El proceso de obtención de este producto, compuesto por la mezcla de once alcoholes, muestra una composición reproducible lote a lote que resulta muy estable y definida.

ABSTRACT: Colleted epidermises from henequen (Agave furcroydes L) leaves were submitted to a process of extraction, using an organic solvent, to obtain the wax of this specie. This wax, after submitting to an alkaline hydrolysis reaction, was submitted in another process of extraction, this time, to obtain a mixture of eleven, aliphatic, straight and high molecular weight alcohols. This mixture was characterized chemically by means of the Infrared Spectrometric and the Gas Chromatography coupled to Mass Spectrometric techniques; Finally, the identified and quantified alcohols were: 1-hexacosanol, 1-heptacosanol, 1-octacosanol, 1-nonacosanol, 1-triacontanol, 1-hentriacontanol, 1-dotriacontanol, 1-tritriacontanol, 1-tetratriacontanol, 1-pentatriacontanol and 1-hexatriacontanol, being 1-octacosanol and 1-triacontanol the main components. This product, composed for the mixture of eleven alcohols, shows in its process of obtainment a very stable, well-defined and reproducible composition from batch to batch.

INTRODUCTION

Other authors have previously, described biological effects of higher primary fatty alcohols. Thus, triacontanol was reported as a plant growth stimulator1 also showing moderate anti-inflammatory antiviral effects^{2,3}. Hexacosanol has been referred as stimulant of the neural cell growth in tissue culture and experiments⁴⁻⁶, also, showing inmunological properties⁷; octacosanol has been described as an ergogenic compound8 and related to the lipid metabolism in rats⁹. Also, in 1984, Sho and coworkers 10 described that partially purified Okinawan sugarcane wax lowered levels of cholesterol on serum and liver, while triglycerides phospholipids remained changed, in rats with induced hypercholesterolaemia, but concluded that fatty alcohols did not induce such effects. Nevertheless, Shimura and coworkers11 studying the effects of octacosanol on motor endurance in mice found that these animals fed with from supplement extracted sugarcane wax had a significant reduction in cholesterol triglycerides in the liver.

Other mixture of these type of alcohols, named policosanol, was obtained from sugarcane (Saccharum officinarum L.) wax,12 showing cholesterol-lowering effects, demonstrated in different experimental models. 13,14 It is a cholesterollowering drug indicated for patients with type II hypercholesterolaemia and dyslipi-demia associated to an insulin dependent diabetes mellitus, which significantly raises moderahigh-density lipoproteins cholesterol (HDL-C). 15,16 Data obtained from preclinical ^{17,18} and clinical studies ¹⁹⁻²⁷ have proven that policosanol is very safe and well drug-related tolerated and no adverse effect has demonstrated up to date. Also, a mixture of these alcohols, obtained shown from beeswax, activity against gastric and duodenal ulcers as well as anti-inflammatory. 28-30 This mixture, also, shows anti-oxidant activity. 31-33 Data obtained from preclinical studies34-36 have proven that this mixture is very safe. Henequen wax have always been a matter of interest, because of its possible industrial application, considering the large extensions of the plant that are cultivated for the production of natural fibres. The amount of wax in the leaves of henequen ranges between 0.1 to 0.3 %, depending on its age, soil, climatic conditions, etc. This wax is made up of esters, aldehydes, ketones, hydrocarbons, fatty acids and free alcohols, the amount of each one depends on the origin of henequen plant and technology used to obtain the wax. Different methods for the isolation of this type of alcohol have been described. 38,39

Present work reports the isolation and purification of the mixture of alcohols from henequen (Agave furcroydes L.) wax for the development of further pharmacological studies.

MATERIALS AND METHODS

All the reagents used on the extraction procedure were of commercial grade (Merck, Darmstadt, Germany). The reagents used for the quantification of the

mixture of fatty alcohols are of chromatographic quality are eicosanol (used as internal standard, 98 % GC), 1-tetracosanol (99.0 % GC), 1-hexacosanol (98.0 % GC) and 1-octacosanol (99.0 % GC, Janssen Chimica, Beerse, Belgium), 1-heptacosanol (98.0 % GC) and 1triacontanol (99.0 % GC) (Sigma U.S.A). St. Louis, Methyl N-trimethylsilyl-trifluoracetamide (MSTFA) (97.0% GC, Buchs, Switzerland). Chloroform, analytical grade (99.8% GC, E Merck, Darmstadt, Germany).

Henequen wax (3000 g) was obtained in laboratory by solvent extraction of the epidermis of henequen leaves. Previously, the leaves were collected in the factory of Mariel (Havana, Cuba) during the harvest of 1998-1999 from 8-years old plants.

The henequen wax was taken to melt at 100 °C, adding 80 g of KOH dissolved in 100 mL of ethanol; water (1:1). After the hydroxide solution is completely added, the reaction continues for three hours with continuous stirring, then the saponified henequen wax is cooled at room temperature.

The mixture of fatty alcohols was extracted in the following manner: Saponified henequen wax (500 g) is extracted in a 2 L Söxhlet apparatus using 1000 mL of dichloroethane, during 24 hours. Solvent was evaporated to a third of its volume under reduced pressure and the was cooled extract at temperature overnight. Whereby, the mixture of fatty alcohols was dissolved in chloroform (2 L) and let to stand at 4 °C overnight. The crystallization process was repeated once more and after that time, the solution was filtered and the crystals were dried on a vacuum oven at 45 °C, overnight.

Chromatographic analysis, for identification and quantification of the mixture of fatty alcohols, were performed as described for the identification and quantification of policosanol from sugarcane 40,41 using a GC-14B (Shimadzu-Kyoto, Japan) gas chromatograph with flame ionisation detector (FID), coupled to a C-R4A (Shimadzu-Kyoto, Japan) computerised data

processor. A 3 % OV-101 on Chromosorb HP 80-100 mesh (Supelco, Bellofonte, U.S.A) glass column 3 m length x 3 mm i.d. was used. The GC analysis was adjusted to the following conditions: injector and detector temperature: 320 °C, oven temperature: from 200 to 320 °C (10 °C/min) and held for 10 min, carrier gas (argon) flow: 30 mL/min, hydrogen and air flows for FID were adjusted to 40 and 400 mL/min respectively and injection volume was 1 µL.

The quantitative determination of the mixture of fatty alcohols was done using the internal standard method^{42,43}, in which 1-eicosanol was used as internal standard. In this case, a known quantity of the 1eicosanol solution is added to the sample of the mixture of fatty alcohols. The mixture was derivatized using MSTFA as sylanizing agent, in the following manner: 10 mg of the mixture of fatty alcohols were weighed into a 3 mL vial with screw cap and 100 µL of MSTFA were added to it, heating the solution at 60 °C for 15 min on a dry thermostat.

IR spectra were recorded on a PU spectrophotometer. spectra of the individual alcohols, present in the mixture of aliphatic alcohols, were obtained in a GC/MS 800 (Fisons, Instruments, MD England) equipment coupled with a Lab-Base (VG Mass Lab, England) software using a SE-54 (25 m length, 0.32 mm id.) capillary Bellofonte. column (Supelco, following U.S.A.) with the chromatographic conditions: temperature of detector and the injector 320 °C, of the ionisation chamber 250 °C and that of the interface 200 ^oC at 40 ^oC/min, from 200 to 320 ^oC at 8 °C/min, carrier gas (He) flow 1.0 mL/min and the energy of ionisation was of 70 eV. Sample need, firstly, to be derivatized using MSTFA as sylanizing agent in the same manner as was previously described. One µL of this solution was injected to the GC-MS system, the chromatogram is recorded and the mass spectra analysed further.

RESULTS AND DISCUSSION

The quantitative composition of the mixture of aliphatic alcohols is the following: 1-octacosanol (24.60 %), and 1-triacontanol (24.39 %) are the main components of the mixture, the other alcohols in the mixture are 1-hexacosanol (0.69 %), 1-heptacosanol (0.41 %), 1-nonacosanol (2.45 %), 1-hentriacontanol (9.25 %), 1-dotriacontanol (20.82 %), 1-tritriacontanol (4,85 %), 1- tetratriacontanol (8.90 %), 1-pentatriacontanol (2.10 %) and 1-hexatriacontanol (1.56 %), this quantification is obtained from the gaschromatogram of the mixture of alcohols (Figure 1).

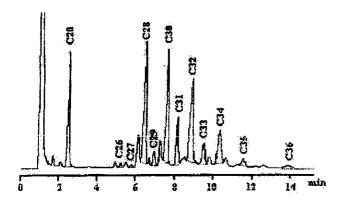


Figure 1: Gas-chromatogram of the mixture of alcohols obtained from Agave furcroydes L. wax

IR bands of the mixture of fatty alcohols (KBr discs) were 3236.5, 2912.8, 1460.2, 1609.0 and 791.1 cm⁻¹. This spectrum shows a strong similarity, including the fingerprint region, with respect to those of the commercial samples of the individual alcohols present on it, which were, also, measured.

The mass spectra of the sylanized fatty alcohols, present in the mixture of fatty alcohols (after resolution by GC) are: 1-hexacosanol: 439 (100 %), 423, 125, 103, 83, 75 (41 %), 57 and 43 d; 1-heptacosanol: 453 (100 %), 437, 125, 103, 83, 75 (40 %), 57 and 43 d; 1-octacosanol: 467 (100 %), 465, 125, 103, 83, 75 (70 %), 57 and 43 d; 1-nonacosanol: 481 (100 %), 479, 125, 103, 83, 75 (60 %), 57 and 43 d; 1-triacontanol: 495 (100 %), 507, 125, 103, 83, 75 (70 %), 57 and 43 d; 1-hentriacontanol: 509 (100 %), 507, 125, 103, 83, 75 (52 %), 57 and 43 d; 1-tritriacontanol: 523 (100 %), 507, 125, 103, 83, 75 (52 %), 57 and 43 d; 1-tertatriacontanol: 551 (100 %), 535, 125, 103, 83, 75 (65 %), 57 and 43 d; 1-pentatriacontanol: 565 (100 %), 563, 125, 103, 83, 75 (45 %), 57 and 43 d and 1-hexatriacontanol: 579 (100 %), 577, 125, 103, 83, 75 (55 %), 57 and 43 d.

The sylanization of the alcohols produce an increase of 57 d in the molecular weight of each of them, and the base peak in this spectrum corresponds to the lost of 15 d of this molecular ion (M+-15). The lost of the analysed fragment with a simultaneous rearrangement of hydrogen gave place to the 75 d fragment [OH-Si(CH₃)₂]⁺ an intense peak that is common for these alcohols. Another characteristic peak of this type of alcohols is that of 103 d, which structure corresponds to [CH=O-Si(CH₃)₃]⁺, characteristic of the sylanized terminal hydroxyl groups. The fragments at 43 (C₃H₂)⁺ and 57 d (C₄H₉) are characteristic of compounds showing a hydrocarbon chain.

CONCLUSIONS

It was possible to isolate, purify and characterize, studying chromatographic and spectroscopic properties, a mixture of eleven fatty. alcohols of high molecular weight from henequen (Agave furcroydes L.) wax. The following alcohols compose this mixture: 1-hexacosanol, 1-hepta-1-octacosanol, 1-nonacocosanol. sanol, 1-triacontanol, 1-hentriacontanol, 1-dotriacontanol, 1-tritriacontanol, 1-tetratriacontanol, 1-pentatriacontanol and 1-hexatriacontanol being 1-octacosanol and 1-triacontanol the main components of it.

BIBLIOGRAPHY

- Ries, S.K., Wert, K., Sweeley C.C., Leavitt, R.A., Science, 195, 1339-41, 1977.
- McBride, P.T., Clark L., and Krueger J.C., J Investigative Dermatology, 89, 380-3, 1987.
- Warren R.P. and John S. Proc Soc Exp Biol Med, 200, 349-52, 1992.
- Borg J., Toazara J., Hietter H., Henry M., Schmidt G., and Luu, B. FEBS Letters, 213, 406-10, 1987.
- Borg J., Keeslak P.J. and Cotman, J.C. Brain Res, 518, 295-298, 1990.
- Borg J. J Neuroscience Res, 29, 62-67, 1991.
- Moosbrugger I., Bischoff P., Beck J.P., Luu, B. J Int J Inmunopharm, 14, 293-302, 1992.
- Cureton T.K. The physiological effect of wheat germ oil on human in exercise, Charles C.T. Publishing Co., Illinois, 296-300, 1972.
- Karino H. British J Nutr, 73, 433-41, 1995.
- Sho H., Chinen I., and Fukuda N. J Nutr Sci Vitaminol, 30, 553-9, 1984
- 11. Shimura S., Hasegawa M., Takano S., and Suzuki M. Nutr Reports Inter, 36, 1029-38, 1987.

- Laguna A., Magraner J., Carbajal D., Arruzazabala L., Más R. and García M. A mixture of higher primary aliphatic alcohols, its obtention from sugar cane wax and its pharmaceutical uses, Patent CU 22 225, US 5663156 and US 5856316.
- Arruzazabala M.L., Carbajal D., Más R., Molina V., Valdés S. and Laguna A. Biological Res, 27, 205-8, 1994.
- Carbajal D., Arruzazabala M.L., Más R., Molina V and Valdés S. Prostaglandins, Leukotrienes and Essential Fatty Acids, 50, 249-51, 1994.
- Hernández F., Illnait J., Más R., Castaño G., Fernández L., González M., Cordoví N., and Fernández J.C. Curr Ther Res, 51, 568-575, 1992.
- 16. Torres O., Agramonte A.J., Illnait J., Más R., Fernández L., and Fernández J.C. Diabetes Care, 18, 393-97, 1995.
- 17. Rodríguez M.D., Sánches M., García H. Toxicol Letters, 90, 97-106, 1997.
- Alemán C.L., Noa M, Cerejido E., Más R., Rodeiro I., Hernández F. and Briñis F. Food and Chem Toxicol, 33, 573-8, 1995.
- Pons P., Rodríguez M., Más R., Illnait J., Fernández L., Robaina C. and Fernández J.C. Curr Ther Res, 55, 1084-92, 1994.
- Canneti M., Morera M., Illnait J., Más R., Fernández L., Castaño G. and Fernández J.C. Int J of Clinical Pharmacol Res, XV, 159-65, 1995.
- Canetti M., Morera M., Más R., Illnait J., Frenández L., Fernández J.C. Curr Ther Res, 58, 1100-07, 1996.
- 22. Crespo N., Alvarez R., Más R., Illanit J., Fernández L. and

- Fernández J.C. Curr Ther Res, **58**, 44-51, 1997.
- Castaño G., Tula L., Canetti M., Morera M., Más R., Illnait J. Fernández L and Fernández J.C. Curr Ther Res, 57, 691-9, 1996.
- Castaño G., Más R., Fernández J.C., Pontigas V., Suazo M. and Fernández L. Curr Ther Res, 59, 737-45, 1998.
- Más R., Castaño G., Illanit J., Fernández L., Fernández J.C., Alemán C., Pontigas V. and Lescay M. Clin Pharmacol and Ther, 65, 439-47, 1998.
- Castaño G., Más R., Fernández L., Fernández J.C., Illnait J and Sellman E. Angiol The J of Vasc Dis, 50, 123-30, 1998.
- 27. Fernández L., Más R., Illnait J. and Fernández J.C. Curr Ther Res, 59, 717-22, 1998.
- 28. Magraner J., Laguna A., Más R., Carbajal D., Arruzazabala L. and Díaz M. A natural mixture composed of higher primary aliphatic alcohols obtained from beeswax for the treatment of gastric and duodenal ulcers, that also presents anti-inflammatory activity. CU Patente 22 412, US Patente 6235795.
- Carbajal D., Molina V., Valdés S., Arruzazabala M.L. and Más R. J Pharm and Pharmacol, 48, 858-60, 1995.
- Carbajal D., Molina V., Valdés S., Arruzazabala M.L., Más R. and Magraner J. Prost Leuk and Essential fatty acids, 59, 235-8, 1998.
- Molina V., Valdés S., Carbajal D., Arruzazabala M.L., Menéndez R. and Más R. J Medicinal Food, 4, 79-83, 2001.
- 32. Menéndez R., Más R., Amor A.M., Pérez Y., González R.M., Fernández J.C. and Jiménez S. Arch of Med Res, 16, 2001.

- Menéndez R., Más R.; Amor A.M., Pérez Y., González R.M., Fernández J.C. and Jiménez S. J Medicinal Food, 4, 71-77, 2001
- Rodeiro I., Alemán C., Noa M., Menéndez R., Más R., Hernández C. and García M. Drug Chem Tox, 21, 151-63, 1998.
- Rodríguez M.D., Gámez R., Sánchez M. and García H. J Appl Toxicol, 18, 313-6, 1998.
- Rodeiro I., Alemán C., Más R.,
 Acosta P.C. and Gámez R.
 Biotecnología Aplicada, 18,
 88, 2001.
- 37. Eastmond A and Robert M.L. Advanced plant biotechnology in Mexico: A hope for the neglected? World Employment Programm Res.2-22/WP, 200. March, Int. Labour Off., Geneva, Switzerland, 1989.
- 38. Horn A., Martic J.S. J of Science Food and Agriculture, 10, 571, 1957.
- Inada S., Furukawa K., Massui T., Honda K., Ogasawara J., Tsubakimoto G. (Nippon Oil and Fats Ltd.). US Patente 4714791.
- González V., Magraner J., Laguna A., Velázquez C. and Lorenzo M. Revista CENIC Ciencias Químicas, 29, 123-6, 1998.
- 41. González V., Magraner J., Otero T. and García E. Revista CENIC Ciencias Químicas, 30, 148, 1999.
- 42. Trachant J. Practical Manual of Gas Chromatography. Elsevier Publishing, New York, Chapter 8, 1969.
- 43. Perkins G., Laramy R.E., and Lively L.D. Analytical Chemis-try, 35, 360-362, 1963.