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SUMMARY : Aging process was considered from the thermodynamic point of
view. This approach is based on the non linear theory of dynamic systems which
permits to study the bio-systems beyond the classical scope and on dissipative
structures . Several oscillating and chaotic chemical systems were studied using the

°- -production an±s mi cxw:iswii W W, iiiCririUUynumics of irreversible
processes to chemical systems far from the equilibrium. Calculations of rates of
entropy production in human beings have confirmed the hypothesis that stable
volutio

	

t bin-c stem- may occur ttrouo.h a chsnnr dynam ic state,

	

hue
periodic or quasiperiodic oscillations may emerge as a natural way and their can
be postulated that aging process begins. The system becomes more sensitive to
perturbations, increasing the damages and leading to degenerative diseases .

INTRODUCTION

Factors that determine aging (We are not referring to the social aspects, way of
life, etc .) constitute in the present one of the fundamental problems of the human
knowledge . The multi-factor nature of aging is the main difficulty to reach a
unique approach or theory .

There are several theories ' ' 2 from which Harman's theory 3 is from our point of
view the more plausible because considers several facts and the way aging is
operating through the degenerative diseases such as cancer, atheroesclerosis,
Alzheimer dementia (SDAT), etc .

According to the free radical theory given by Harman the main factor that
induces such diseases is the deleterious action of free radicals on biopolymers .
The main portion of the oxygen used by the aerobic organisms is converted to
water. However, some enzymes such as triptofan-oxigenasa, and the xanthine-
oxydase, are able to catalyze oxidative reactions by transferring one electron from
the substrate to each oxygen molecule generating mainly free radicals such as
radical superoxide, hydroxyl radical and hydrogen peroxide . Free radicals can react
in several ways, for example, acting on a stable molecule can produce another one
radical as in a chain reaction .

Thus, oxidation of unsaturated fatty acids and phospholipids from biological
membranes is produced disturbing the cellular behavior and producing by-products
such as aldehydes and hydro-carbons such as methane and ethane . Free radicals are
ableto react with nucleic acids, ADN, proteins and poly-saceharides

In general a biological system
can be considered as a complex
dynamic system that is changing
far from the thermodynamical
equilibrium. Complexity and ai-
versity of these systems are the
main features that have lead to find
a multi fac

	

.,ry f

	

,
A great step in the comprehen-

sion of the complexity of the
biological systems was given by
Prigogine . Dissipative struc-
tures are able to auto-organize
themselves far from the thermo-
dynamical equilibrium and emerge
as a consequence of processes that
operate in the threshold of the
instabilities of stationary states,
maintaining its structure by dis-
sipating energy and mass to the
environment. Those structures are
observed by hierarchical ordering
on the matter. 6

As examples the well-known
Benard's instability in hydrodyna-
mic fluids, oscillating chemical
reactions where oscillating inter-
media y concentrations are
coupled with diffusion giving rise
to reaction-diffusion patterns and
biochemical systems such as the
NADH oxidation catalysed by the
horseradish peroxidase .'
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From this approach, complexity
and diversity in biological systems are
not factors to produce new auto-
organization forms but qualitative
features of them. This approach also
permits to study the biological
systems and their auto-organization as
as a whole independently of the
particular features and complexity .
Complexity is a functional factor that
enables to the system perform specific
actions .

On the other side the physico-
mathematical development of the
theory of non-lineal dynamics '

made possible to widen the scope of
the study of biological systems . It
has been found that "normal"
regulation and control systems such
as the nervous system and cardiac
rhythm present a chaotic dynamics .

The main purpose of the present
paper is to discuss the biological
aging with a unified approach using
the thermodynamic point of view .
This approach is based on the theory
given by Prigogine about dissipative
structures combined with the non-
lineal dynamics.

In Section 2 an overview of the
dynamic systems is offered and in
Section 3 a thermodynamical
approach to the biological systems

as models oscillating and
chaotic chcrnicai reactions an_ an
extension of the evolution criterion
for these systems far from the
equilibrium. Finally, in Section 4 is
discussed the aging of the biological
systems and a conjecture about the
thermodynamical approach .

NON-LINEAL DYNAMIC
SYSTEMS

The purpose of this section is to
offer an overview about the
fundamental concepts of the theory of -
dynamic systems and its impact on
the study of the biological systems .
There is a specialized review on this
matter that the reader can use to get a
better insight in this topic . 9.10 -

Dynamic systems. Concept
!it the classification of dynamic

systems are considered every
physical, chemical, biological or
meteorology system. Qualitative
features of every non-lineal dynamic
system during its evolution as a
dissipativve system are described by
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the solutions of the ordinary
differential equation .

dt	=F. (X, p)
dt

(2 .1)

On the phase space 91' of dimension
m the vector X represents the
coordinates that describe the system
(for example concentration of
chemical species, etc .) ; it is the vector
of control parameters and its variation
determine the qualitative behavior of
the system dynamics and F, is a non
lineal function of concentrations,
differentiable and depends on a.

Solutions 0 (X, u) of equation 2 .1
can be describe by the action flow Fr.
If the system is dissipative, that are
those physically important, the

divergence of the flow RFt is
negative. This means that the flow in
the phase space shrinks during its
temporal evolution .

Thus, for too the initial finite
volume V (commonly known as
Lebesgue's dimension) of R' in the
subspace A of finite volume in a
dimension D smaller so that D < m.
For a dynamic system under chaotic
regime D is a . hoic . .. .; us a lly
known as fractal dimension (DF). "

Ensemble A is called an attractor if
the trajectory with initial condition X"
e V can be attracted to a compact set
of points A in the phase space .

For simple attractors such as fixed
points (steady state) or periodic orbits
(limit cycle, torus) the orbit X(t) is
stable if in the vicinity S2 all points
contained in the orbit approach
asymptotically to S2. On the contrary
if at least one point is moving away
the orbit is unstable .

Attractors that are originated by
aperiodic oscillations are chaotic .
Thus, shapes of high complexity in
the phase space arise and were called
fractals by Mandelbrot . It must be
noted that volume shrinkage does not
occur in all directions, in fact the
trajectories in some directions are
moving exponentially away and
others are attracted . Thus, the
dynamic behavior is extremely
dependent on the initial conditions .

Under chaotic regime the system
shows a high complexity and is
generating new information, as a
consequence the forecast of new
states is forbidden.

Changes on the dynamics of the
system are ruled by the control
parameters. In this case the "phase
transitions" are produced by a
bifurcation. If a bifurcation takes
place the attractor becomes unstable
and the system moves towards a
stable state and a new self-
organization emerges. Bifurcations
can be classified according to how
stability is lost, for example, en
dependence of what invariant exists in
the phase space before and after
bifurcation . 11

In general the global_ stability of a
system during its evolution can be
evaluated through the Lyapunov
function V . is It is defined as a
function of n variables V = V
(X,, . . .,X‚) that satisfies around the
beginning of the coordinate axis the
following conditions :

I . V > 0 only if X; =0 Vi= 1,

The eulerian derivative

dV

	

8V
u
when t ? to then is said that the state
is asymptotically stable .

Evolution towards a chaotic
regime is the result of a "cascade" of
bifurcations. Several ways to attain
chaos has been identified 12 such as
period duplicating, intermittence, etc .

Another fundamental feature of a
chaotic regimen is its stability in front
of external perturbations. A
remarkable difference exists with
respect to other self-organized stages
because the attractor does not
change." This is of interest for the
biology as was already pointed out
because the nervous impulse of the
cardiac rhythm in normal Health State
are chaotic .' In this regime the
system exhibits a high complexity due
to the generation of new information .

The characterization of the chaotic
regime can be done taking into
account static properties of the
attractor, as the fractal dimension, or
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dynamic ones such as the Lyapunov
exponents spectrum, the entropy or an
stochastic description known as
symbolic dynamics .

Attractor dimension
As a consequence of the continuos

expansion and contraction of the flux
Ft in the attractor A its shape
resembles an ameba. The geometric
characterization of the set of points in
the phase space is called fractal
dimension D,: of A, so that is less than
the m dimension of the phase space
and is not an integer . Physically the
atractor dimension indicates the
number of independent variables that
characterize the dynamics of the
system .

In general three types of
dimensions can be distinguished 14

the topological dimension D r, the
fractal dimension D F and the
information dimension D, so that D,
_< D, S D,: . Mainly we will talk
about the informationn dimension .

Make to latex around to attractor
of like form that we will designate
you like "box" to each division of the
latex . If n(r) is the number of boxes
with a probability different from zero
and the empty boxes are designed by i
then pi (r) is the probability of
occurrence of the i`" box . The
ensemble {pi(r)} referred as the
probability distribution of resolution r
(coarse grained), the information
contained in the measurement n is

n(r)

1(r) = -kI pi (r) log pi (r)

If the probability of all the boxes is
the same then 1(r) = log n(r) and the
information dimension is reduced to
the fractal dimension that was
historically called Hausdorff
dimension and defined as

DF = llm log n(r~

	

(2 .4)
r-->x

	

r
Lyapunov exponent spectrum
The Lyapunov exponent spectrum

represents for a dynamical system the
gain and/or loss of means information
during its evolution . According to the
sign of the exponent the flux F` for the
system is physically characterized .
Thus, we have

s(t) = V. Ft = E e t" t

	

(2.5)

where E(t) is the divergence of the
flux F` and k is the mean speed of the
divergence .

If 2 is negative, two close
trajectories will converge, in other
words the system is gaining
information ; if 7c is zero the
trajectories will diverge linearly and
finally if k is positive the trajectories
will diverge exponentially losing
information in an exponential way
during its evolution .

A dissipative system described by
x E R3 is characterized by three
Lyapunov's exponents . According to
the sign of them the evolutive regime
can be classified as : fix point (steady
state) if the three exponents are
negative, a limit cycle will result for
the particular case when one of them
is zero; a torus T 2 if two of them are
zero and finally a chaotic regime if at
least one of them is positive .

There are several ways to define
mathematically the Lyapunov's
exponents . 75 We will use the
mathematical definition that
geometrically gives the physical
meaning of them .

In a phase space m dimensional,
the Lyapunov's exponent of the axis n
is defined as

2. =limlogLi (tI
(0)

t-)w

D, = lint
1(r)

	

(2.3)

	

(2.6)
r-m r

	

where Li is the radio of the ellipsoid
(flux F) along i" axis at time t .

i=1
(2 .2)

where k is a constant, if k= I/log 2
them unit of 1(r) are a bit (binary
unit), if k= ka = 1 .38x10-73 J/K (kn
is the Boltzman constant) them the
unit are the same as the
thermodynamical entropy, such as
J/K .

If r increases a more refined
sequence is generated . Thus, the
information dimension represents the
speed to which the information scales,
as the precision of the measurement,
increases

Entropy
Entropy for the dynamical systems

has the same physical meaning that
the entropy defined by the second law
of the Thermodynamics . A detailed
discussion of this matter will be offer
in Part 3 . Here we will define the
entropy as the measure of the
uncertainty during the evolution of a
dissipative system or the degree of
information of the system . " In this
way information and entropy can be
measured in the same units, both are
positive magnitudes and different
from the energy . Thus, information is
defined as

S(t) = kB > P(x t) In P(x t)

(2.7)
where n(r) and pi(r) have the same
meaning as in equation 2 .2, k is a
constant that defines the units of I(r),
if k = I/log2 2 the unit is the bit
(binary unit), if k= kb= 1 .38 x 10 .23
J/K (k b is the Boltzman's constant)
the units are the same used for the
thermodynamical entropy in J/K.
Commonly we will use the bit .

The change in time for I(r) in 2 .7
when r --> oo and t -3co is known as
the Kolmogorov's N entropy (in bits)
and is defined as

dl(r)
I~ = lint lint

1(r)
dt

	

r->°ot --*r t
(2 .8)

Trajectories of a dynamic system
can be classified according to the
entropy K, for t{=0 periodic
oscillations, quasioperidic or steady,
for t4>0 chaotic oscillations and for
K=co noise .

Other important feature of the
entropy H is the so-called Pesin's
equality 10 defined as

Physically talking tt is a measure of
the rate of losing information for the
system under chaotic regime .

1 5 1

(2 .9)
where X+ is refereed to the
Lyapunov's positive exponents .
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THE THERMODYNAMICS OF DYNAMIC
SYSTEM. OSCILLATING AND CHAOTIC
CHEMICAL REACTIONS.

Thermodynamics began from the works of Carrot,
Clausius, Joule and others at the beginning of the industrial
revolution when thermal machines were build . 100 years
have elapsed from those machines and now "chemical and
biological machines" have chandelled the second law .

One of the tasks today in front of Thermodynamics is to
answer to the problems related to the self-organization of
the dynamic systems far from the thermodynamic
equilibrium . The core of the problem became more clear
from the works of Prigogine and his school at the Free
University of Brussels in Belgium in the seventieth . Under
the name of "dissipative structures" those systems able to
self-organize far from the equilibrium as a consequence of
the instability of the system and to the continuos
dissipation of energy and matter to the surroundings .
Professor 1 . Prigogine was awarded with the Nobel Prize in
Chemistry in 1977 .

In 1951 the Russian chemist Belousov 16 looking for a
solution or culture able to generate some kind of life found
the following reaction : In an acidic aqueous solution an
organic substance (citric acid) was poured in order to react
with an inorganic material (potasium bromate) using a
catalyst (cerium IV sulphate) in aerobic conditions .
Surprisingly temporal and spatial oscillations due to the
intermediary species occurred and reaction-diffusion
patterns were observed .

Some years later in 1964 another Russian Zhabotinsky
[16] came back to the Belousov's idea and published this
reaction that is known at the present as Belousov-
Zhabotinsky . Belousov was not alive to know that his idea
became a paradigm of the self-organization in chemistry .
Self-organization in chemistry is an ideal model to be used
as illustration of the behavior in other hierarchical levels
even more complex such as enzymatic reactions, biological
cycles, cellular division, etc . 17

Oscillating and chaotic chemical reaction models
"Chemical cycles" are different from "thermal cycles"

because they operate with only one thermic focus while the
latter need two according to Carrot so they are a challenge
to the Second Law .

We will illustrate our ideas through a series of
theoretical oscillating and chaotic chemical reaction
models, which have been thoroughly discussed in the
literature from the point of view of dynamics . 18,19

Autocatalator model 19 is shown

where "y" is autocatalytic generated in the trimolecular
step (A.3) .
Another well known model is the Brusselator : '7
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in which the trimolecular step (B.3) is autocatalytic . The
Oregonator is another well-known model 20 developed for
the Belousov-Zhabotinsky reaction . 16 Its details are
shown :

in this case there are three intermediaries x, y and z and
two autocatalytic bimolecular steps (0.2), (0 .3) . Finally
as a model for a chaotic reaction we will analyze the model
given by Rossler. 21 This model shows some exotic
behaviors such as periodic, quasi-periodic and chaotic
oscillations and we will see a phenomenon very interesting
known as "crisis" .' The mechanism is the following :

Details for the rate parameters, initial conditions and
control parameter are shown in Table 3 .1 .

Rate of entropy production as an evolution criterion
For simplicity these chemical reactions can be

considered as an ideal mixture in mechanic and thermal
equilibrium . Thus, according to T. de Donder the entropy
variation is given by dS,. :

dSs =d4; +&e
(3 .1)

where SS, is the entropy flux between the system and the
environment and SS ; is the production of entropy during its
evolution due to the irreversible processes. The
fundamental postulate of the Second Law establishes :

SS; > 0

	

(3.2)

it is to say that the system goes creating entropy SS1 > 0 .
Thus, taking the temporal variation of (3.1) is obtained:

where A is the rate of entropy of the system, Aow is

the rate of entropy flux and a is the rate of entropy

production (P ). If the system travels through a

A + X -> 2x (R-l)
x + Y - 2y (R-2)
B + Z .- 2z (R-3)
C + Y -> D (R-4)
x + Z -> E (R-5)

dS =- BS + ƒS (3 .3)
dt dt dt

+ 0 (3 .4)

that can be re-written as

A -, x (B-1)
B + x > y

	

+ D (B-2)
y + 2x -> 3x (B-3)

x - E (B-4)

A + Y

	

x

	

+ P (0-1)
x + Y

	

2P (0-2)
A + X

	

2x + z (0-3)
2y

	

A

	

+ P (0-4)
Z

	

fy (O-5)

A -~ x (A-1)
x -> y (A-2)
2y -> 3y (A-3)
y --) B (A-4)
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stationary state, a periodic or quasiperiodic regimen then

0 so that

A
701

Under chaotic conditions then „' > 0 so that that

A, > IsnwI

According to the Thermodynamics of Irreversible

Processes the rate of entropy production A 23 is given

by

6=>J,,Xi >- 0
i

(3 .7)
where J, is the generalized flux and X, is the generalized
force . In the present case and without concentration or
temperature gradients or external fields for the chemical
reaction a is given by

o

	

T- ' A . P'

	

(3 .8)

where T is the absolute temperature in Kelvin, A is the
chemical affinity and V the rate of reaction. Thus,
according to T. de Donder the chemical affinity is equal to

A-- ° TP =RTIn

	

K

	

(3 .9)
a~

	

~

	

ki\

	

/

	

j j i(Cki

where G is the Gibbs's potential, ~ the degree of reaction,
R the gas constant equal to 8 .31 J/mol.K and K, is the
equilibrium constant and C k ; and ok, the concentrations and

(3 .5)

k2 = I E-2 k2 = I k+2 = 1 .6E+9 k-2 = 2.5 E-5
k3 = 2.5E+9 k3 = I E+7 k+3 = 8 E+3 k-3 = 4.8E+I I
k4 = 1 k4 = 10 k+4 = 4 E+7 k-4 = 1 .6E-10
AO 0.1

	

A0=10

	

k+5 =I

	

k-5=1E-5
BO =1E+3

	

f{0.5-1 .5}
PO {IE-4-1 E-1}

stoichometric coefficients respectively of reactants and
products for the substance `k' in the `i' step .
On the other side the reaction rate is

d~
=

dt
V=1Vi = 1(V - Vi- )

	

(3 .10)

where V, and V; are the forward and reverse reaction
rates for the `i' step respectively . According to the Mass
Action Law V, is equal to

V! = ki+f Cki(+) ki(+)

	

(3 .1Ia)

Vi =ki 11(Cki(-)fkt(-)

	

(3 .11 b)

where uk‚ ;, uk,,,, Ck,, , y Ck‚_, are the stoichiometric
coefficients and concentrations of products and reactants
for the compound 'k' in the 'i' step for the forward (+) and
reverse (-) reaction ; ki - and kf are the rate constants .
Taking the equations 3 .1 1 . 3 .10 and 3.9 and substituting in
3 .8 is obtained

6=Ry Vi -V }n
V

	

(3 .12)
Vi

For a periodic or quasiperiodic oscillating regime the
mean value of 3 .12 is

~6)cL.T =I Jodt

	

(3 .13)
z

where T is the period of oscillation . For the chaotic regime
the limit of 3 .13 is taken t --*a so that

(a)crr = limy I J6dt

	

(3 .14)
V

Table 3.1 . Rate parameters (ki) and control parameter values (A,B,P) for the models studied .
Autocatal .

	

Brusselator

	

Oregonator

	

Rossler
kl = I E-3

	

kl = I E-I

	

k+1= 1.34

	

k-I = 1 E+4

	

k+I = 1

	

k-1 = 2.5 E-
1
k-2 = I E-3
k-3 = 5 E-I
k-4 = I
k-5=1

k+2 = 1
k+3 = I
k+4 = I
k+5 = 1
B = 16.5
D=E=0.01
A0{0-100}

Models were analytically and numerically explored . A Gear's algorithm was used for the numerical simulation (221 .

1 53
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Table 3 .2. Dependence of <a> for each model according to the value of its control parameter .

2
'stationary state, initial (i), and last (f) respectively .
limit cycle, and period doubling .

Discussion
In Table 3 .2 are shown the mean values of a in the

attractor during the evolution of the system for each model
in dependence of the value of the control parameter .

It is observed how the systems go over different
attractors during its evolution in dependence of the control
parameter. If the control parameter decreases (as in the
case of a reactant) the system decreases its rate of entropy
production . For example for the Autocatalator and the
Oregonator (f= 0 .5) is possible to reach a limit cycle due
to a Hopes bifurcation from both stationary states .
According to the Second Law, the limit cycle can not be
attained from the final stationary state (SSf) due to the
lesser value of <a> . In fact to the system returns to the
limit cycle from SS f the concentration of the reactant A
should increase during the reaction (for the case of the
Autocatalator) or decrease the product P for the
Oregonator. In both cases it is chemically senseless .

For the Rossler's model the behavior is more complex
but like to the other models studied, It is interesting to
point out the sudden departure from the chaotic to the
stationary state . This phenomenon is not very usual and
has been described in the literature as "crisis' 6 for the case
when the chaotic behavior is left to pass to periodic
oscillations .

From the standpoint of the biologic systems this fact is
very curious because if the human being can go through a
chaotic regime in some stage of its life, we can ask
ourselves. What consequences will result for the system if
by changing a control parameter a "crisis" is triggered? Or
is actually this the natural way to be choosing for the living
systems during its evolution? Or is it the choice of the
living system when the degenerative diseases emerge? .
The global stability of the system far from the
thermodynamic equilibrium as has been demonstrated in
previous works 24 is given by the functional relation of
with the control parameters that are capable to change the
characteristics of the self-organization of the system . For
example for the case of the Oregonator <a> can be written

as a function of P and f, then taken the Eulerian derivative
we have

d(6) = a(6) , dP + a(a) , df < 0
dt

	

aP dt of dt
(3.15a)

if f is a constant, them :

d(6)a(a) , dP <0
dt

	

aP dt
(3 .15b)

where P is the reaction product that increases in

time \dP > 0l , thus dP) < 0

as is shown in Table 3 .2. This means that <a> is a
Lyapunov's function, as was discussed in Part 2, and
permits to establish not only the asymptotic stability of the
system but according to the Second Law is useful as an
evolution criterion .

Equation 3 .15 can be written is a more general form for

P = A(,u), where It is the control parameter vector,

thus it should be fulfilled that

d
= v, VA <_ 0

dt
(3.16)

being V the rate vector of … and VA- the gradient of

state Autocatalator Brusselator Oregonator Rossler

(a) A (a) A B (a) A (a) A
SSi 1 1 .4 E-4 1 .0 ------- ------- ------- 1 .2 E-2 1.0 9.9 E+3 75

E-1 E-3
CL 2 2.2 E-5 1 .9 10 10 1 .0 7.5 E-4 7.0 7.7 E+3 54

E-2 E+3 E-3
Chaos ------- ------- ------- ------- ------- ------- ------- 3.4E+3 30.5
Crisis ------- ------- --- --- ------- ------- ------- ------- 1 .6 E+2 29
SSf 3 .7 E-6 2.0 3.0 E-2 7.0 E-1 2 .6 E-6 2.2 2.5 E+l 15.7

E-3 913 E-2
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FINAL DISCUSSION:
PREAMBLE OF A HYPOTHESIS

Thermodynamic approach to the
aging process for the biologic systems
permits to see this problem as a
whole, globally, taking into account
that the "whole" is even more than the
sum of the different parts .

There are three basic questions to
which we must try to answer in order
to understand the problem in a first
sight :
L How to explain the beginning of
the aging process for different
mammalian species?
2 . How to explain the appearance of
degenerative diseases that cause the
aging of biologic systems?
3 . How to link the aging theories
that exist at the present with this
approach?

The first problem to elucidate is
the evolution stage through which the
biologic systems go (our attention is
focused to the human being). A
generalized criterion establishes that a
stationary state 25 or through several
stationary states, the "three stage
hypothesis . 226 We shall discuss in
detail that point .

Stationary state
There are several definitions about

view of the thermodyna of
irreversible process 23 and from the
chemical kinetics . 27 As was already
discussed in Chapter 3 if a system
goes over a stationary state (SS) the
following equality must be fulfilled

"flow

	

(4.1)

in order to keep the stationary state .
., . such state according to the

Prigogine's theorem 17 it is not
possible any type of self-organization .
Only far from the thermodynamic
equilibrium, with increasing of
fluctuations to the macroscopic level,
the state becomes unstable due to a
bifurcation or a cascade of bifur-
cations thus emerging new -self-
organization forms . 5

Thus the evolution of a biologic
system through an SS is not in
correspondence with the physical
reality observed, these systems are
able to self-organize and self-
regulation far from the equilibrium .
Ralmer 28 developed an entropic
model for the biologic systems where

the entropy rate for the system can
change from positive to negative .

From the point of view of the
dynamic systems (Part. 2), the equali-
ty 4 .1 is valid for the stationary states
and for the periodic o quasiperiodic
regimes. On these stages the Kohno-
gorov's entropy t't is equal to the
entropy rate and its value is zero .

According to the above discussion
we can guess that the ideal regime for
the evolution of the biologic systems
is the chaotic one . In such regime
suitable conditions are present for the
apparition of all kinds of self-organi-
zation ways and mechanisms for the
self-regulation . Furthermore in such
state the system becomes stable to
external or internal perturbations,
keeping its stability . In this state the
system is continuously creating
information appearing a "memory"
that resembles the evolution picture of
the biological species .

Some experimental facts are
backing this conjecture . One of them
is related to the studies carried out on
the human EEG that have shown that
the nervous impulse in normal

29 30patients is chaotic - im file
contrary in pathologic states such as
epilepsy, the dynamics is periodical or
cuasi-per . _ . Ano _ .
experimental fact is related to the
ECG studies where ventricle fibrilla-
tion and arrhythmia show a quasi-

state are related to chaotic regime .'2

These results permit suggest that the
more suitable state for the evolution
of a biologic system is the chaotic
one .

Rate of entropy production and
entropy flow

The entropy flow for the biologic
systems (open systems) is given by
the equation

n

	

T
Where 10y L* are related

to the rate of energy and mass
changed with the neighborhood . As
was shown by Aoki26

~
ix-, D. I

	

I

L j >> L4j so that

equation 4 .2 can be written as

Alvp is equal to 16 .8 A' (J.s') and(4 .2)

flow = T (4.3)
The body heat I

	

is lost by

radiation and convection (70%),
sweat vaporization (27%) and also by
breathing, urine and defecation . Thus

the entropy flowAow is given by

the following balance

ow = 4 +
~p

"cnv + a vp (4 .4)
where A is the entropy flow due to
infrared radiation hat is given by

(4 .5)

where ~u and in are referred as
the portion released and absorbed
respectively . Thus equation 4 .5 can be
re-written as

4 = .3 Ae6(Ts 3 +Tc3 ) (4.6)
4

where Ae is the specific average
radiating surface in m2 m2(152), a is
the Stetan-Boltzman constantt equal to
5 .67x10 8 J.m"2 . s'.K4 T, is the
human skin temperature equal to

K

	

he t

	

.u-_ of
the calorimeter (surroundings) equal
to 303 .2 K. Absortivity of the human
skin for the infrared radiation is equal

iLV LI1G GrnLJIYlly 0.et.VIYY,b w "rv

Kirchoff Law '3 and its value around
unity. Entropy due to the sweat

vaporization Avp is equal to

evp

	

Tr

(4.i)

where Avp is the heat released by

water evaporation at T O = 303.2 K and

T, is the temperature of the rectum
equal to 310.4 K (as a body average) .
Finally the entropy flow due to

convection A ,,, is equal to

(4.S)

1 5 5
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where Anr, is the energy released by convection and is

equal to

"cnv - otal

	

evp "rad - 8.0 Ae (J.s
-I

and T, is the human skin temperature equal to 307 .4 K .
Finally the entropy flow due to convection is equal to 8 .0
A` (J .s' i) .

Thus the net entropy flow is equal to

"' Jlow -

	

- ( out + A , + 1190"en

	

evp

= 0.170Jm -2s-lK-1

This classical calculation was done by Aoki taking into
account the works of Dubois and toll. 26.33,34 . Aoki was
able to demonstrate how the surrounding temperature in

the interval of 24 to 34°C does not change Aow . Our

purpose was to show how this value was determined in
order to use it in further argumentation. However the fact
that the flow entropy is constant and independent of the
age is a very striking one as has been suggested in the
literature . "

According to Zotin 36 the rate of entropy production

A can be determined as follows

A + ck,

T
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It is obvious that these calculations are approximately but a
trend from the 20 year age is clearly shown ; the chaotic
regime tends to disappear and the aging processes begin to
be activated so the biosystem is more sensitive to
perturbations . Experimental facts indicate this trend . Thus,
for example, the breathing capacity of the human being is

where

	

2
is the rate of oxygen consumption (metabolic

rate) and is related to energy metabolism reflecting the
thousands of reactions and physical processes that are

occurring in the organism . The term G&I is related to the
glycolysis and is negligible under aerobic conditions . Thus,
equation 4 .9 can be written

(4.10 )
T

In order to compare the metabolic rates for different
individuals and species the rates are determined under
mental and physical resting as complete as possible using
pleasant room temperature and 12-14 hours after the last
meal. Then under these conditions the basal metabolic
rate (BMR) is obtained .

In figure 1 is shown the data of „under basal

conditions for both sex in dependence of the age of the
individual, for calculations the data reported by Ganong 37
was used .

If we compare the

	

ow 1 (0.170) with the values for

for different ages it shown that up to 20 years A >

I A~ I so that the entropy rate for the system

	

is

grzater

	

zero,

	

i ncay‚ Lite .u yate :7i ui:um
chaotic regime.

I- SS,./dt
I ---Men

L	 -Women

0 1o 20 30 a0 50 6o
Age (years)

Figura 1 . The mean value of the rate of the entropy production under basal conditions for both sex and different age . The
dashed line represent the entropy flow .

optimal and begins to decline curiously after the twenty
years. " It has been pointed out in the literature 39 that the
complexity of the cardiac rhythm changes with the age of
the healthy individual
going over the ECG more complex and other ones more
simple and finally periodical .
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We arrive by this way of thinking that the activation of
the aging processes occurs on a natural way for the
biosystems . This conjecture is according to the theory
given by Cutler 40,42 where each mammalian species is
characterized by a particular lifespan. Physiological and
psychological changes that occur by aging have shown to
indicate the biological age of the individual .

To the light of this conjecture, how to explain arising of
the degenerative diseases? Besides the oxygen
consumption by the organism during the vital processes it
occurs a parallel reaction giving the radical-ion superoxide
02' . According to the Harman theory 3 of free radicals,
these species are generated in chain reactions and are
present on the appearance of the degenerative diseases
such as cancer, atherioesclerosis, etc .

Here is precisely established the link between the
thermodynamic approach and the free radical theory . As a
consequence equation 4 .10 needs another term due to the
entropy production due to the free radical have a
hypothesis containing a thermodynamic approach useful to
fight against the degenerative diseases that are the main
death causation for the third age .
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